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Negatively buoyant projectiles – from weak
fountains to heavy vortices
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An experimental investigation to establish the maximum rise height zm attained by a
finite volume of fluid forced impulsively vertically upwards against its buoyancy into
quiescent surroundings of uniform density is described. In the absence of a density
contrast, the release propagates as a vortex ring and the vertical trajectory is limited
by viscous effects. On increasing the source density of the release, gravitational
effects limit the trajectory and a maximum rise height zm is reached. For these
negatively buoyant releases, the dependence of zm on the length L of the column
of ejected fluid, nozzle diameter D (= 2r0), dispensing time and source reduced
gravity is determined by injecting saline solution into a fresh-water environment. For
3.4 � L/D � 9.0, zm/r0 is shown to scale on the source parameter η = Fr(L/D), a
product of the source Froude number Fr and the aspect ratio L/D for the finite-
volume release. Our results show that the morphology of the cap that develops above
the source and the vortical motion induced within are sensitively dependent on the
source conditions. Moreover, three rise-height regimes are identified: ‘weak-fountain-
transition’, ‘vorticity-development’ and ‘forced-release’ regimes, each with a distinct
morphology and dependence of dimensionless rise height on η.
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1. Introduction
We consider the maximum rise height zm attained by a volume V of miscible

fluid, of source density ρ, forced vertically upwards over a time interval 0 � t � td ,
against its buoyancy, into a still environment of uniform density ρa <ρ. In contrast
to continuous releases of dense fluid, the maximum rise height and morphology of
a finite volume of dense fluid released in a finite dispensing time td have not been
considered previously.

Continuous high-Reynolds-number-fluid releases give rise to turbulent fountains
(Turner 1966). A starting fountain (Marugán-Cruz, Rodrı́guez-Rodrı́guez & Martı́nez-
Bazán 2009) entrains ambient fluid as it rises and the local momentum flux, induced
by the action of the negative buoyancy, increases with height, thereby reducing the
rise velocity until a maximum rise height is attained at a height z = zm above the
source at z =0. An exchange of momentum flux between the upflowing core and
the subsequently downflowing perimeter causes the initial maximum rise height to
reduce to a quasi-steady rise height. The dependence of the fountain’s rise height on
the fountain source Froude number Fr0 (see (2.2)) has received considerable attention,
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both theoretically and experimentally (Turner 1966; Baines, Turner & Campbell 1990;
Zhang & Baddour 1998; Bloomfield & Kerr 2000). The anatomy of the fountain is
sensitive to Fr0 and very weak, weak and forced-fountain regimes, each with a
different rise height dependence on Fr0, have been identified (Lin & Armfield 2000;
Kaye & Hunt 2006). Low-Reynolds-number continuous releases producing laminar
fountains have been examined in the work of Williamson et al. (2008).

The dynamics of a fountain are in stark contrast to those of injections resulting
from a non-continuous (discrete) release, i.e. as established when fluid is released over
a finite time interval. Impulsively releasing a cylindrical body of neutrally buoyant
fluid (ρ = ρa) of length L and diameter D (= 2r0) into still surroundings induces a
vortex ring; see Shariff & Leonard (1992) for a review. Gharib, Rambod & Shariff
(1998) examined the generation and propagation of such vortex rings and established
that a maximum vorticity is attained in the ring for an aspect ratio of L/D ≈ 4.
Increasing L/D beyond this value, referred to as the formation number, caused the
formation of secondary vortices rather than enhancing the vorticity of the primary
vortex ring.

We expect the dynamics of a finite-volume release of negatively buoyant fluid
(ρ >ρa) that is forced impulsively upwards to share similarities with both a fountain
and a vortex ring depending upon the dispensing time td , reduced gravity g′ = g(ρ −
ρa)/ρa and volume released. For example, if td exceeds the time taken to reach the
maximum rise height tm, we anticipate the behaviour to be fountain-like, i.e. for
fluid to attain maximum rise height and then maintain a quasi-steady height whilst
fluid is being released. Conversely, for shorter dispensing times (td � tm), we expect
the release to be projected above the source, to reach a maximum rise height zm

whilst continuously collapsing under gravity and to potentially behave like a starting
fountain for the bulk of the dispense period. The maximum rise height would increase
on decreasing g′ and in the limit of zero density difference (g′ =0) a vortex ring would
propagate away from the source until all its vorticity had transferred to its wake – the
nature of the ring developed depending then only on L/D (Shariff & Leonard 1992;
Gharib et al. 1998). This contrast between fountain- and vortex-like behaviours raises
the question of which source parameters govern the dynamics of negatively buoyant,
or so-called heavy finite-volume releases and, for given source conditions, the extent
of the vertical projection.

We report on experimental measurements and flow visualizations (§ 2) that show
how the morphology of a ‘cap’ of dense fluid, which forms above the source during
release, and a ‘stem’, which connects the cap to the source, change as the release
propagates. We show (§ 3) that the rise height of a finite-volume release with g′ > 0
can be characterized in terms of a source Froude number Fr and the aspect ratio of
the release. Moreover, we show that for 3.4 � L/D � 9.0 the dimensionless rise heights
zm/r0 scale on the dimensionless source parameter η = Fr × (L/D). Additionally, we
describe how the behaviour of a general release falls into three broad categories,
namely, either a weak-fountain transitional regime, a vorticity-development regime or
a forced-release regime.

2. Experiments
The releases studied were produced using a gear pump (an ISMATEC MCP-Z

Process) to dispense saline solution from a smooth bore cylindrical tube (hereinafter
referred to as the nozzle) into fresh water. The nozzle, with exit facing vertically
upwards, was attached rigidly 15 cm above the base of a glass-sided visualization
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Set V (cm3) D (cm) g′ (cm s−2) L/D Symbol

1 10.0 2.15 4.50 1.29 ×
2 15.0 2.15 7.37 1.94 �
3 20.0 2.15 4.50 2.58 �
4 25.0 2.15 7.37 3.23 �
5 15.0 1.78 6.39 3.40 �
6 15.0 1.78 7.37 3.40 �
7 30.5 2.15 4.39 3.93 �
8 35.0 2.15 4.50 4.52 ◦
9 40.0 2.15 4.50 5.16 ∗

10 40.0 2.15 7.37 5.16 �
11 20.0 1.70 4.50 5.18 �
12 25.0 1.78 7.37 5.66 +
13 40.0 1.78 6.39 9.06 �
14 40.0 1.78 7.37 9.06 •

Table 1. Summary of release conditions.

tank. The tank, of plan area 176 cm × 125 cm, was filled with water to a depth of 100
cm. Saline solution was fed to the pump from a 20 l reservoir which was immersed in
the tank in order to equalize temperatures between the source fluid and the release
environment. The densities of the source and ambient fluids were measured using an
Anton PAAR DMA 4500 densitometer (±5 × 10−5 g cm−3). The tank was uniformly
backlit using a light box containing an array of high-frequency fluorescent tubes and
visualization of the release dynamics was achieved by infusing the saline solution with
methylene blue of approximate concentration 0.1 mg cm−3. Images of the flow were
captured using a JAI CVM4+CL camera with a Pentax 12.5–75 mm 1:1.8 TV ZOOM
lens and a Hoya R(25A) filter. The camera was connected to a computer-controlled
BitFlow R3 frame grabber card and Matlab R2007a was used to process the captured
images.

The gear pump settings, namely the number of revolutions per minute (r.p.m.) and
the dispensing time td , could be varied independently. This allowed, for example, a
constant volume V to be ejected over a range of dispensing times. A high r.p.m.
in combination with a small td produced ‘highly forced’ releases, whilst a low
r.p.m. in combination with a large td produced ‘weakly forced’ releases. Volumes
of 10 ± 0.1 cm3 � V � 40 ± 0.4 cm3 with reduced gravities 4 cm s−2 � g′ � 7 cm s−2

were dispensed over times 0.16 ± 0.002 s � td � 6.92 ± 0.07 s. Measurements of the
exit-velocity history (achieved by tracking a front in a clear acrylic nozzle at 24 Hz)
indicated a period of constant exit velocity w for a duration td and a subsequent
period of linearly decreasing velocity of duration 0.2td . Three nozzles, of diameters
D = 2.15, 1.78 and 1.70 cm, enabled releases of aspect ratios 1.29 � L/D � 9.06. The
overall length of each nozzle (30 cm) exceeded the longest ejected column of saline
solution (L = 16.1 cm), so that the fluid was ejected solely from the nozzle and not
from the adjoining rigid tubing. Release conditions are given in table 1.

The saline releases were of high Péclet number (Pe ∼ O(108)) so that diffusive
effects over the time scale of the developing flow were small (typically tm � 10 s), and
of relatively high exit Reynolds number (Re ∼ O(103)). Dimensional considerations
then indicate that the dimensionless groups L/D and Fr (see (2.1)) govern the
behaviour of a finite-volume negatively buoyant release. The Froude number
Fr , for the finite-volume release, may be established from a physical viewpoint
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by considering the ratio of the dominant forces acting upon the release –
the impulsive vertical force that ejects fluid from the nozzle into the quiescent
surroundings (ρV w/td) and the buoyancy force (ρag

′V ):

Fr =

(
ρV w/td

ρag′V

)1/2

=

√
w

g′td

√
ρ

ρa

=
w√
g′L

√
ρ

ρa

. (2.1)

For a continuous release giving rise to a fountain,

Fr0 = w/
√

g′D/2. (2.2)

Restricting our attention to the Boussinesq case as ρ/ρa ≈ 1 for the small-density
differences considered herein, Fr0/Fr ∝

√
L/D and Fr = w/

√
g′L. This indicates that

it is the dependence on the aspect ratio L/D that distinguishes the source conditions of
finite-volume releases dispensed over finite times from releases producing continuous
fountains. The parameter space explored in our experiments was limited by the
apparatus to a maximum forcing equivalent of Fr0 ≈ 6 and L/D ≈ 9. Fourteen sets
of experiments were run to establish the dependence of the rise height and release
morphology on these parameters. Over 300 individual experiments were performed
in total.

3. Results and discussion
Figure 1 shows the development of eight releases (r1–r8) of identical g′, L and

D, with successively decreasing dispensing times td , as they approach maximum rise
height at a time t/tm = 1. Each row of seven still images captures the release at
the normalized times t/tm = {0.25, 0.38, 0.50, 0.63, 0.75, 0.88, 1.00}. To enable direct
comparison between the shape and size of the individual releases, the images are of
identical scale. The vertical extent of the grey surrounding frame in row 8 corresponds
to 15 cm (image resolution 1170 vertical × 826 horizontal pixels). It is clear that
the release dynamics are sensitively dependent upon the dispensing time td . This is
apparent on viewing column 7, which shows the strikingly different forms of the
releases at their maximum rise height. Moreover, a change in the initial development
of the releases with td is also apparent (on viewing column 1). Reducing td by
approximately a factor of 4 (r1–r8) increases the rise height by approximately a factor
of 8 (from zm/r0 = 1.65 to 13.8), and the shape of the release and its dynamics are
altered completely.

It is evident then that the ratio of the time taken to reach maximum height tm
(not known a priori ) and the time to dispense td influences the anatomy of a release.
For td 	 tm, as in r1, fluid released reached a maximum rise height before dispensing
finished. Here, the release appears and behaves like a weak fountain as achieved by
a continuous release (cf. Kaye & Hunt 2006) and the rise heights scale accordingly
(figure 2b). For these releases the value of L/D did not influence rise height. As
td decreased, so that td < tm, the rise height increased and the release morphology
changed from a shape resembling an oblate hemisphere, with weak-fountain-like
behaviour, to a mushroom-shaped structure; compare releases r1–r4. For the latter,
a distinct ‘cap’ formed that connected to the source via a ‘stem’ or conduit of fluid
whose radius typically decreased to a neck immediately above the nozzle.

A build-up of vorticity was observed within the cap as it formed. The contained
vortical motion became increasingly distinct as td decreased and discernible as sharp
lines of circulation (e.g. r5 and r6). During the very early transients the short stem
acted as a conduit channelling fluid up to the developing cap (e.g. r6 for t/tm = 0.25).
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r  td (s) tm (s) Re

1 2.52

0.25 0.38 0.50 0.63 0.75

t/tm
0.88 1.00

2 2.09

3 1.49

4 1.30

5 1.14

6 1.02

7 0.92

8 0.62

2.50 710

3.00 860

2.75 1210

3.00 1380

3.25 1580

4.00 1760

4.25 1960

6.00 2900

Figure 1. Images of eight releases (r1–r8) from a time t/tm = 0.25 to the time of maximum rise
height t/tm = 1.00. The images show the effects of increased source forcing on the rise height
and flow structure as achieved by successively reducing the dispensing time td for L/D = 3.93,
V = 30.5 cm3, D = 2.15 cm and g′ =4.39 cm s−2 so that Fr0 = 3.89/td , producing 1.5 (row 1)
<Fr0 < 6.3 (row 8). Re = wD/ν, where ν = 10−2 cm2 s−1.

At later times, e.g. when dispensing was complete, the direction of flow was reversed
in the stem and dense fluid descended under gravity from the cap back towards the
source. The outline perimeter of the flow became reminiscent of a pipette, i.e. with an
elliptical cap atop a column of the descending fluid with decreasing diameter (e.g. r7 at
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Figure 2. Dimensionless rise heights. (a) zm/r0 versus Fr0, showing the variation with L/D.
(b) Exploded view of (a) for 0.2 <Fr0 < 1.4. Also plotted are rise heights for ‘very weak’
fountains (—) and for ‘highly-forced’ fountains (- - -). For an explanation of the symbols in
this and subsequent figures, see table 1.

t/tm = 0.63). Instabilities were triggered (e.g. r6 for t/tm = {0.88, 1}) and appeared on
curtains of fluid flowing down around the stem’s perimeter. For td � tm, the rise height
was sufficiently large that the axisymmetry of the descending flow, which consisted of
fluid which had drained from the cap, was broken. This is particularly clear in r8 for
t/tm = 0.88 and 1. The volume of the vortex cap initially increased to a maximum and
visibly decreased during its subsequent rise as a consequence of the descending fluid
(compare r6 at t/tm = 0.50 with t/tm = 1.00). The draining of the fluid from the vortex
is clearly pronounced for r7 and r8 which show marked reductions in cap volumes as
maximum rise height is approached.

Releases for which td 
 tm gave rise to fountains, whose rise heights may be classified
solely in terms of Fr0. For truly continuous releases, the rise height scaled on the
source radius has been shown to collapse onto a single curve when plotted against
Fr0; see Turner (1966) and data collated from a number of authors in Kaye & Hunt
(2006). It was thus of interest to plot zm/r0 against Fr0 for our discrete releases
and compare directly with fountain rise heights. Figure 2 plots the dimensionless rise
heights, associated with 12 aspect ratios within the range 1.29 � L/D � 9.06, against
Fr0, which was increased for a given nozzle by reducing either g′ or td . The rise
heights for very weak fountains (zss/r0 = 0.94Fr

2/3
0 , Kaye & Hunt 2006) and forced

fountains (zm/r0 = 3.52Fr0, Turner 1966) are included for comparison.
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Figure 3. zm/r0 versus η showing collapse of rise-height data for 3.4 � L/D � 9.06 (data for
L/D < 3.4 fall below the collapsed data). (I) Weak-fountain, (II) vorticity-generation and (III)
forced-release regions are demarked. Inset images depict typical flow morphology at maximum
rise height. The estimated maximum experimental error is shown in the lower right corner.

For a given L/D, increasing Fr0 increased the rise height of a discrete release
(figure 2a), confirming the trends shown in figure 1. For Fr0 � 1.4, the rise heights of
the discrete releases are independent of L/D and show a close correlation with the
rise-height predictions for very weak fountains (figure 2a for Fr0 � 1.4 and figure 2b).
The collapse of the rise-height data for Fr0 � 1.4 and adherence to the weak-fountain
predictions break down once the inertia force driving the release becomes sufficiently
dominant relative to the opposing buoyancy force. This is evident for Fr0 > 1.4 as the
sets of rise-height data begin to fan out in lines of constant L/D, thereby marking
the onset of a dependence on L/D. For Fr0 
 1.4, an increase in L/D results in a
rise in zm/r0 for a given Fr0, a rise which is increasingly prominent for higher values
of Fr0, other than for releases with weak-fountain-like behaviour. For 1 � L/D � 2
(1.29 (×), 1.94 (�)) the increase in rise height with Fr0 is weak and a zm/r0 ∼ Fr

2/3
0

weak-fountain-like behaviour is maintained over the entire range of Fr0 examined –
and notably for Fr0 exceeding (e.g. Fr0 = 6) that for which weak-fountain behaviour
is expected in a continuous release. For larger L/D a stronger variation in zm/r0 with
Fr0 is observed and rise-heights approach, but are bounded from above by, those
attained by a ‘highly-forced’ fountain where zm/r0 ∼ Fr0.

Figure 3 shows the dimensionless maximum rise heights for L/D 	 3.4 plotted
against

η = Fr
L

D
=

Fr0√
2

(
L

D

)1/2

=
tb

td

L

D
, (3.1)

which expresses a ratio of a characteristic buoyancy time scale tb =
√

L/g′ to the
dispensing time td for the fluid volume, of aspect ratio L/D, released. The zm/r0 versus
η scaling (figure 3) provides a very good collapse of the data, showing no systematic
variation with L/D, and thus indicates that for the range of L/D examined, the
rise height may be expressed solely in terms of η and it increases with increasing
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Figure 4. zm/L versus Fr . Data shown for L/D > 3.4.

η. For η to remain constant on increasing L/D (i.e. on ejecting a greater volume
from a given nozzle) and thereby to achieve a constant height of projection, it is
necessary to decrease the ratio tb/td . This may be achieved by either decreasing the
forcing (by increasing td) or by increasing the buoyancy of the release. Similarly, a
reduced buoyancy of release would require an increase of td or decrease in L/D in
order to produce the same η and thus the same dimensionless vertical projection. For
L/D < 3.4, a decrease in L/D for a constant η resulted in a reduction of zm/r0.

Vorticity formation in vortex rings offers an explanation as to why there is a collapse
in dimensionless rise heights for 9.0 
 L/D 
 3.4. Different approaches to model vortex
ring formation (see Dabiri 2009 for a review) predict maximum vortex ring growth
at a formation number, or critical aspect ratio, of (L/D)cr ≈ 4. Recent studies by
Wang et al. (2009) and Marugán-Cruz et al. (2009) suggest that buoyancy influences
(L/D)cr , which may decrease with negative buoyancy. Our value of (L/D)cr = 3.4,
above which our rise-height data collapse, supports this trend.

Three regions (I, II and III) are identified and demarked on figure 3. The regions
are referred to as (I) the weak-fountain, (II) the vorticity-development and (III) the
forced-release regimes. The rise-height data presented in figure 3 are replotted in
figure 4 after dividing both axis scales by L/D. The resulting zm/L versus Fr scaling
provides a good collapse of the data and trends similar to those in figure 3. The fact
that the rise height zm/L scales on Fr (figure 4) is unsurprising when one considers
the analogous scaling for continuous fountains, the length scale for the discrete
release being L for both the vertical rise and the buoyancy velocity rather than r0

(or equivalently D) for the fountain. That said, the variation between rise-height
regimes and the demarcation between them, as discussed in §§ 3.1–3.3, are clearer in
figure 3. To further highlight the flow morphologies and aid the following discussion,
still images taken in regimes I, II and III at the time of maximum rise height are,
respectively, shown in rows 1, 2 and 3 of figure 5. The discussion of following regimes
applies for L/D 
 3.4.

3.1. Regime I: Weak fountain and transition

For Fr0 � 1.4 releases are dominated by their buoyancy and collapse upon dispensing,
spilling over the nozzle perimeter like fluid over a weir. The releases adhere to weak-
fountain rise-height predictions as zm is attained before dispensing is complete. A good
collapse of the zm/r0 data with Fr0 is achieved irrespective of L/D (figure 2b) and thus
η (see (3.1)) plays no direct role. As the effect of inertia becomes increasingly dominant
there is a departure from the weak-fountain rise-height behaviour. Specifically, for
Fr0 
 1.4 there is a transition, as shown in figure 5 (row 1), to the so-called vorticity-
development regime (§ 3.2 and figure 5, row 2). Within this transition the variation
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zm/r0
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η
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2.25
1.39
1.26

2.46
1.52
1.45

2.66
1.65
1.71

2.86
1.77
2.43

3.08
1.90
3.17

3.49
2.16
3.55

3.69
2.28
3.58

3.92
2.43
3.58

4.15
2.57
3.64

4.39
2.72
3.81

4.65
2.88
4.11

4.94
3.06
4.84

5.18
3.21
5.14

5.76
3.56
5.57

6.03
3.73
6.05

Figure 5. Images at maximum rise height showing releases in the (I) weak-fountain,
(II) vorticity-generation and (III) forced-release regimes. For each of the 15 releases
shown, D = 2.15 cm, V = 40.0 cm3, L/D = 5.16 and g′ = 7.49 cm s−2. Fr0 was increased by
decreasing td .

of rise height with Fr0 is stronger than for a weak fountain. Notably, the stills taken
within regime I display little or no discernible vorticity (e.g. columns 2–4).

3.2. Regime II: Vorticity development (ηa � η � ηb, Fr0 
 1.4)

With increased forcing, vortical motions become apparent as the head of the release
changes from a collapsing body of fluid to a distinct vortex cap – compare rows 1
and 2 of figure 5. In the ‘vorticity-development’ regime, increased forcing alters the
flow within the cap but does not significantly increase the rise height. The structure
within the cap develops from an unorganized flow (row 2, column 1) to a coherent
and symmetrical vortex (row 2, column 5). Thus, the increase in kinetic energy input
at the source as forcing increases serves primarily to raise the vorticity in the head.
This can be seen for 3 � η � 4 (figure 5), suggesting ηa ≈ 3 and ηb ≈ 4 for L/D = 5.16.
The value η = ηb corresponds to maximal vorticity in the cap and marks the upper
limit of this regime.

3.3. Regime III: Forced-release regime (η 
 ηb, Fr0 
 1.4)

Once the source forcing is sufficient to induce a maximal vorticity any further increase
in forcing serves primarily to propel the head further from the source (figure 5, row 3).
It is clear that η controls the rise heights for the range of {Fr0, L/D} parameter space
considered (figure 3). Independently increasing Fr0 and L/D would induce a vortex
ring for sufficiently large Fr0 (either containing all the release fluid or atop a trailing
jet for L/D 
 (L/D)cr ) and a continuous fountain for L/D → ∞.
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Relative to fountains, where rise heights are controlled solely by Fr0, finite-volume
releases of sufficiently low L/D may be regarded as experiencing a ‘lack of fluid’.
This is responsible for the η dependency and prevents true fountain-like behaviour,
i.e. rise heights following the dashed line in figure 2 for Fr0 
 1. As L/D increases,
this fluid deficit subsides with ηb approaching ηa . (The precise variation of ηb with
L/D has yet to be determined.) For sufficiently large L/D, the rise height reverts to
a dependence solely on Fr0; there is some evidence of this in figure 2 where release
rise heights coincide with forced-fountain rise-height predictions, e.g. for L/D = 9.06
(•, �) at Fr0 
 4.4. Marugán-Cruz et al. (2009) show that vorticity establishment in the
cap of a starting fountain, i.e. a release with no deficit of fluid (L/D → ∞), occurs at
Fr0 ≈ 1.4. Given that vorticity development in finite-volume releases occurs at ηa ≈ 3,
from (3.1) Fr0 
 1.4 requires L/D 
 9. In other words, L/D 
 9 may be regarded as a
sufficient supply of fluid to enable rise-height behaviour seen in continuous fountains.

4. Conclusions
We have described an experimental investigation concerning a finite-volume release

of dense fluid forced vertically upwards, against its buoyancy, into still and uniform
surroundings. The rise heights and morphologies of these releases were examined
for injections of saline solution into fresh water. Our results demonstrate that the
maximum rise heights are governed by the release aspect ratio L/D and a source
Froude number Fr based on the length of the fluid cylinder ejected.

The maximum rise-height data zm/r0 collapsed when plotted against Fr(L/D) for
(L/D)cr � L/D � 9.0, where (L/D)cr ≈ 3.4, and additionally for zm/L plotted directly
against Fr . For L/D < (L/D)cr the vorticity within the release is below maximum
and thus the rise height attained on subsequently increasing L/D may be regarded
as being limited by vorticity development. For the range of Fr considered, the
collapse of the rise-height data when plotted as zm/L versus Fr is more readily
interpreted in that the dominant length scale is the physical length of the release
rather than the source diameter as for continuous releases producing fountains. For
(L/D)cr � L/D � 9.0, the variation of dimensionless rise height with source conditions
and the shape and internal structure of the flow allowed the releases to be classified
into three regimes: (I) ‘weak-fountain’ transition, characterized solely by Fr0 provided
Fr0 � 1.4; (II) ‘vorticity-development’, where rise heights are limited by a ‘lack of fluid’
and increased forcing primarily generates vorticity in the head and (III) forced-release
behaviour, where the vorticity in the head is fully established and increased forcing
projects the release further. The maximum rise heights were bounded by the maximum
rise height of a forced fountain from above and a weak fountain from below. Due to
limitations of our apparatus, the vertical projection of releases for Fr > 1.3 (Fr0 > 6)
was not possible but would be of future interest, as would examining releases for
L/D < 1.

The authors gratefully acknowledge funding from Imperial College’s Urban Cities
Programme and comments from an anonymous referee and Professor Paul F. Linden
on an earlier draft.
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